How to help?

Frequently Asked Questions

Information technology (IT) is the use of computers to create, process, store, retrieve, and exchange all kinds of data and information. IT is typically used within the context of business operations as opposed to personal or entertainment technologies. IT forms part of information and communications technology (ICT). An information technology system (IT system) is generally an information system, a communications system, or, more specifically speaking, a computer system — including all hardware, software, and peripheral equipment — operated by a limited group of IT users.

Although humans have been storing, retrieving, manipulating, and communicating information since the earliest writing systems were developed, the term information technology in its modern sense first appeared in a 1958 article published in the Harvard Business Review; authors Harold J. Leavitt and Thomas L. Whisler commented that “the new technology does not yet have a single established name. We shall call it information technology (IT).” Their definition consists of three categories: techniques for processing, the application of statistical and mathematical methods to decision-making, and the simulation of higher-order thinking through computer programs.

The term is commonly used as a synonym for computers and computer networks, but it also encompasses other information distribution technologies such as television and telephones. Several products or services within an economy are associated with information technology, including computer hardware, software, electronics, semiconductors, internet, telecom equipment, and e-commerce.

Based on the storage and processing technologies employed, it is possible to distinguish four distinct phases of IT development: pre-mechanical (3000 BC — 1450 AD), mechanical (1450—1840), electromechanical (1840—1940), and electronic (1940 to present). This article focuses on the most recent period (electronic).

Information technology is also a branch of computer science, which can be defined as the overall study of procedure, structure, and the processing of various types of data. As this field continues to evolve across the world, the overall priority and importance has also grown, which is where we begin to see the introduction of computer science-related courses in K-12 education. However, concerns have been raised about this fact that most schools are lacking advanced-placement courses in this field.

Computer security, cybersecurity (cyber security), or information technology security (IT security) is the protection of computer systems and networks from information disclosure, theft of, or damage to their hardware, software, or electronic data, as well as from the disruption or misdirection of the services they provide.

The field has become of significance due to the expanded reliance on computer systems, the Internet,[3] and wireless network standards such as Bluetooth and Wi-Fi, and due to the growth of smart devices, including smartphones, televisions, and the various devices that constitute the Internet of things (IoT). Cybersecurity is also one of the significant challenges in the contemporary world, due to the complexity of information systems, both in terms of political usage and technology. Its primary goal is to ensure the system’s dependability, integrity, and data privacy.

Cyber security is often confused with information security. Cyber security focuses on protecting computer systems from unauthorized access or being otherwise damaged or made inaccessible. Information security is a broader category that protects all information assets, whether in hard copy or digital form.

Common cyber threats include:
  • Malware, such as ransomware, botnet software, RATs (remote access Trojans), rootkits and bootkits, spyware, Trojans, viruses, and worms.
  • Backdoors, which allow remote access.
  • Formjacking, which inserts malicious code into online forms.
  • Cryptojacking, which installs illicit cryptocurrency mining software.
  • DDoS (distributed denial-of-service) attacks, which flood servers, systems, and networks with traffic to knock them offline.
  • DNS (domain name system) poisoning attacks, which compromise the DNS to redirect traffic to malicious sites.

Information assurance (IA) is the process of processing, storing, and transmitting the right information to the right people at the right time. IA relates to the business level and strategic risk management of information and related systems, rather than the creation and application of security controls. IA is used to benefit business through the use of information risk management, trust management, resilience, appropriate architecture, system safety, and security, which increases the utility of information to only their authorized users and reduces . Therefore, in addition to defending against malicious hackers and code (e.g., viruses), IA practitioners consider corporate governance issues such as privacy, regulatory and standards compliance, auditing, business continuity, and disaster recovery as they relate to information systems. Further, IA is an interdisciplinary field requiring expertise in business, accounting, user experience, fraud examination, forensic science, management science, systems engineering, security engineering, and criminology, in addition to computer science.

The information assurance process typically begins with the enumeration and classification of the information assets to be protected. Next, the IA practitioner will perform a risk assessment for those assets. Vulnerabilities in the information assets are determined in order to enumerate the threats capable of exploiting the assets. The assessment then considers both the probability and impact of a threat exploiting a vulnerability in an asset, with impact usually measured in terms of cost to the asset’s stakeholders. The sum of the products of the threats’ impact and the probability of their occurring is the total risk to the information asset.

With the risk assessment complete, the IA practitioner then develops a risk management plan. This plan proposes countermeasures that involve mitigating, eliminating, accepting, or transferring the risks, and considers prevention, detection, and response to threats. A framework published by a standards organization, such as NIST RMF, Risk IT, CobiT, PCI DSS or ISO/IEC 27002, may guide development. Countermeasures may include technical tools such as firewalls and anti-virus software, policies and procedures requiring such controls as regular backups and configuration hardening, employee training in security awareness, or organizing personnel into dedicated computer emergency response team (CERT) or computer security incident response team (CSIRT). The cost and benefit of each countermeasure is carefully considered. Thus, the IA practitioner does not seek to eliminate all risks, were that possible, but to manage them in the most cost-effective way.

After the risk management plan is implemented, it is tested and evaluated, often by means of formal audits. The IA process is an iterative one, in that the risk assessment and risk management plan are meant to be periodically revised and improved based on data gathered about their completeness and effectiveness.

Network security consists of the policies, processes and practices adopted to prevent, detect and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs: conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.

Network security starts with authentication, commonly with a username and a password. Since this requires just one detail authenticating the user name—i.e., the password—this is sometimes termed one-factor authentication. With two-factor authentication, something the user ‘has’ is also used (e.g., a security token or ‘dongle’, an ATM card, or a mobile phone); and with three-factor authentication, something the user ‘is’ is also used (e.g., a fingerprint or retinal scan).

Once authenticated, a firewall enforces access policies such as what services are allowed to be accessed by the network users. Though effective to prevent unauthorized access, this component may fail to check potentially harmful content such as computer worms or Trojans being transmitted over the network. Anti-virus software or an intrusion prevention system (IPS) help detect and inhibit the action of such malware. An anomaly-based intrusion detection system may also monitor the network like wireshark traffic and may be logged for audit purposes and for later high-level analysis. Newer systems combining unsupervised machine learning with full network traffic analysis can detect active network attackers from malicious insiders or targeted external attackers that have compromised a user machine or account.

Communication between two hosts using a network may be encrypted to maintain security and privacy.

Security management for networks is different for all kinds of situations. A home or small office may only require basic security while large businesses may require high-maintenance and advanced software and hardware to prevent malicious attacks from hacking and spamming. In order to minimize susceptibility to malicious attacks from external threats to the network, corporations often employ tools which carry out network security.